たのしい工学・エンジニアリング〈電気自動車(EV)のエンジンはどうなっているんですか?〉②-楽しい学習・自由研究ネタ・たのしい授業・楽しい授業・楽しい自由研究・楽しい学力・楽しい教材・楽しい学力向上

 電気自動車とガソリン車の仕組みについて前回の続き「モーターは電気を流せばまわるけど、ガソリン車のエンジンはガソリンを流せば回るのか?」です。
 子どもにわかりやすく、どう伝えたらよいでしょう。

 私が中学一年の頃、感動したところが伝わる様に書きたいと思います、基本構造をシンプルに紹介します、難しくありませんから安心して読んでください。

 エンジンを日本語にするとなんというか、ご存知でしょうか。

「内燃機関」といいます。 内部で燃やしているんです。

 そうです、ガソリン車は〈ガソリン〉を燃やして走っている、ディーゼル機関車は〈軽油〉をもやして機関車を走らせている、飛行機は〈ジェット燃料〉を燃やして飛んでいるんです。

ディーゼル機関車 wikipediaより

「燃やしている」という言葉には焚き火の様なゆっくりしたイメージがあるのですけど、内燃機関・エンジンは「爆発させている」というイメージです。

 これが実際に車のエンジンの中でガソリンを爆発させている映像です。
 ね、爆発しているでしょう。

 エンジン内の爆発させる部屋をシリンダーと呼んでいます。※シリンダーは本来〈円筒形〉という意味
 爆発すると爆風が広がりますね。
 シリンダーには上下する〈ピストン〉がついて、シリンダー内の爆風が広がる力がピストンを強く押します。

カーライフ・サポートネットに感謝http://www.carlifesupport.net/engine%20kiso_pistonring.html

 上下する直線運動だけではここも実に巧みです、爆風が広がる力を直線運動ではなく、角度をもたせて回転を生んでいます。この構造を〈クランク〉といいます。
 クランクは〈爆発力〉をシリンダー内で動力に変えるシステムに比べると地味な感じがするかもしれませんけど、〈直線の動力〉を〈回転の動力〉に変えてしまうシンプルな仕組みは秀逸です。私が中学の頃エンジニアリング系の学校に進もうと考えたのは、このクランクのシンプルな発明に魅了されたことが大きかったと思います。

 ※

 以上、かなりシンプルにしてまとめたのですけど、エンジン・内燃機関の基本構造は
〈爆発:シリンダー〉⇨〈上下運動:ピストン〉⇨〈回転運動:クランク〉
の三つです。
 ※マツダ社が開発したロータリーエンジンというとても画期的な内燃機関があるのですけど、それはいずれまた

 ここでwikipediaの動画をご覧ください、何がどうすごいのかを知らずに単に動画をみているだけでは、見えなかったものが見えてくると思います。みたらまた戻ってきてくださいね。

https://ja.wikipedia.org/wiki/

 この基本構造に加えて、効率的に爆発させるためにガソリンをうまく空気にまぜてシリンダー内に噴射するシステムも必要です。

 何しろ爆発させているわけですからすごい熱量です、それで水を循環させて冷やさなくてはいけません。

 一つの部屋で爆発させるよりいくつかの部屋(シリンダー:気筒)に分けた方がよいことがわかったので、今の車は4気筒とか6気筒という様になっています、それぞれのシリンダー・気筒の爆発と回転のタイミングをうまく調整していく必要もあります。

 爆発させたあと残ったガスを外に出して、新しくガソリンを含んだガスを吸入しなくてはいけません。

 爆発させたガスは高温で臭いもありますから、マフラーといってそれをうまく処理して排気するシステムも必要です。

 そういういろいろなことを連続でどんどんすすめていくので、エンジン・内燃機関はとても複雑な構造をしています。
 

 
 その結果、ガソリン車のエンジンルームはいろんなものがぎっしり詰まっています。下の方にも複雑な仕組みが連なっています。

 それに比べて、EVのモーターは小さくシンプルです。上のガソリン車と同じ大きさの車ですけど、そのエンジンルームに比べて、モータールームはスカスカな感じがしますね、左側やや前方の四角いヘッドになっている部分がモーターです。

 モーターははじめから回転運動になっているので、エンジンの様な複雑な構造を組み合わせていく必要がないからです。爆発させている訳ではないので排気ガスも出ませんし、熱も内燃機関の様な超高温になることはありませんから、付随するシステムもシンプルです。

 もちろんその分、故障も少なくなります。

 というようにここまで書いてきて電気自動車の構造のシンプルさと内燃機関の構造の複雑さの違いを感じていただけたと思います。

 もちろん時代はシンプルな方、電気駆動の時代にすすんでいくでしょう。

 電気自動車の課題は動きそのものではなくエネルギーを供給する〈バッテリー〉側です、これからさらに進化していく必要があるでしょう、それについても機会があればいずれ。

 とはいえ工学系の私が、より心動かされるのはエンジン・内燃機関側です。

 人間が生み出してきた複雑で美しい構造だと感じるからでしょう、その進化した構造が〈ロケットエンジン〉です、巨大なこのエンジンの前にたつといくらでも眺めていられます。
 これは日本が開発したH2Aエンジンです。

wikipediaに感謝して

 工学系にすすむ人たちがどんどん減ってきているといいます。

 ぞくぞくする様なエンジニアリングを伝える人がとても少ないからでしょう。

 以前〈沖縄から宇宙飛行士をプロジェクト〉を推進していた時、たくさんの子どもたちが工学を目指しました。

 たのしい教育研究所がとても忙しい頃、またあのクラスのイベントを実施したいという申し出がありました。残念ながらお受けすることはできなかったのですけど、またそろそろああいうビッグイベントもまたやってみたい気がしています、興味関心のある方達がいたらオファーしてください、真剣に検討します。

① 毎日1回の〈いいね〉クリックで「たの研」がもっと強くなる!⬅︎クリック

② たのしい教育を本格的に学ぶ〈たのしい教育メールマガジン-週刊有料を購読しませんか! たのしい教育の実践方法から発想法、映画の章ほか充実した内容です。講座・教材等の割引もあります(紹介サイトが開きます)

③ 応援として〈SNSや口コミ〉でこのサイトを広げていただければ幸いです!

たのしい工学・エンジニアリング〈電気自動車(EV)のエンジンはどうなっているんですか?〉①-楽しい学習・自由研究ネタ・たのしい授業・楽しい授業・楽しい自由研究・楽しい学力・楽しい教材・楽しい学力向上

 ある先生が「そろそろ車を買い換えたい」というので私に相談がありました。ちなみに私の趣味のかなり上位が〈車〉で、スマホに届くニュース情報も車関係が最多です。

 その先生の迷いの一つが「電気自動車を購入するか」でした。

 いろいろな情報や予測を整理して伝えると、結論としてコンパクトなハイブリッド車を選んだのですけど、その先生との話の中で私がこれまでに何度かうけたことのある質問が出ました。

「電気自動車のエンジンはどうなってるんですか?」

 みなさんはどう思いますか?

 少し意地悪な答え方に聞こえると思うのですけど「電気自動車(EV)にエンジンはついていません」。

 え、じゃあどうやって車を走らせるの?

 モーターで走らせているんです、モーターって〈ミニ四駆〉とかに入っているこれですよ。

 質問した先生は私のその答えに驚いてこう返していました。

「でも、車を走らせるのだから、特別なモーターなんですよね?」

パワーを出すために大きいものを利用していることと、耐久性を高めているとはいえ、モーターはモーターです。

 おもちゃの車のモーターの中はこうなっています、私も子どもの頃なんども分解していた馴染みの構造です。

 電気自動車のモーターも構造は同じなので、シンプルです。
 電気を送ってモーターを回し、タイヤを回しています、でっかいモーターです。

 中身の構造ももちろんミニ四駆他、おもちゃのモーターと似ています。

 これがミニ四駆などのモーターの構造です。

 これが電気自動車のモーターの構造です、難しい言葉は気にせず、全体的な形をみてください。

 モーターにくらべてエンジン駆動の自動車のエンジンはとても複雑な構造をしています、これはマツダ3の新しいタイプのエンジンです。ロケットエンジンの構造を観る様な複雑な構造をしていますね、車マニアにはこういう構造がたまらないんです。

https://car.motor-fan.jp/tech/10006705に感謝

 電気自動車は電気を流してモーター回して走らせています。

 ではガソリン車はどうやって車を走らせているのでしょう。

 モーターは電気を流すと回ります、エンジンはガソリンを流すと回るんでしょうか?

 前に書いてきた様に、中学ではじめて学んですぐに大嫌いになったのが〈英語〉だったのですけど、逆にすぐに大好きになったのが〈技術科〉でした。その頃は男子は技術科、女子は家庭科に別れて学んでいました。そういえば今はどうなんだろう、あとで調べてみましょう。

 その技術科で怖い先生からエンジンの構造を教えてもらい
「お~、何だかよくわからないけどスゴイなぁ」
と感動し、さっそく本屋さんで本を買って一生懸命読みました。
 結果、さらに専門的でよくわからなくなったのですけど、図などでみるその構造の巧みさに感動を深くし、「高校は工業一択だな」と考える様になりました。そのあたりは以前書いた気がするので割愛。

 さて、ガソリン車はどうやって走っているのか?

 みなさんが簡単に子どもたちに説明するとしたら、どう説明するでしょう、考えてみませんか、言語化すると自分の思考が整理されたり、分かっていること分からないこともハッキリします。

次回に続く!

① 毎日1回の〈いいね〉クリックで「たの研」がもっと強くなる!⬅︎クリック

② たのしい教育を本格的に学ぶ〈たのしい教育メールマガジン-週刊有料を購読しませんか! たのしい教育の実践方法から発想法、映画の章ほか充実した内容です。講座・教材等の割引もあります(紹介サイトが開きます)

③ 応援として〈SNSや口コミ〉でこのサイトを広げていただければ幸いです!

本質を学ぶ意義とたのしさー楽しい英語・たのしい学習・自由研究ネタ・たのしい授業・楽しい授業・楽しい自由研究・楽しい学力・楽しい教材・楽しい学力向上

 メルマガの発想法の章には、私いっきゅうの前書きが加わるのですけど、その前書きに心動かされて、メールしてくださる方たちがいます。今回もさっそく届きました、私が英語の冠詞〈a〉と〈an〉について書いた内容についてです。その部分を少し書き抜きましょう。

いっきゅう

 今回紹介する板倉先生の〈本質や概念を学ぶ重要性〉は学生の頃から私も気にしていたことで、それを学ぶ様に意識していたから受験数学もイヤにならずに済んだという気がしています。

 逆にいうと私が中学で英語が大嫌いになったは、たとえば私の単純な疑問「なんで米英の人たちは、aとかanとかめんどくさい使い分けをしているの?」にさえ「後ろに続く名詞が子音ならa、母音ならanなの、つべこべいわないで、こう覚えなさい」的な指導を累積されていったためでしょう。

 私が英語の先生なら
「これは先生の仮説なんだけどね、〈ひとつの〉ということを示すのは、はじめ〈aだけ〉だったんだよ。ペラペラ喋っていくとさ、うしろが母音だと、母音(a)→母音で〈ア、ア・・〉とかなって言いにくくて、しだいくっくっついていって発音する様になっていったんだと思う。だから母音(a)→母音の時は自然に〈an〉になっていったんだろう。

 不思議だとおもったらさ、自分で早口で
〈a
apple〉とか〈a orange〉って言葉を繰り返してどんどん言ってみてごらん。

 スラスラ語ろうにも流れがそこで切れちゃっうでしょ、スラスラいうには〈ア、アッポー〉より〈アナポー/an apple〉、〈ア、オレンジ〉より〈アノーレンジ/an orenge〉みたいなっていかない?

 文法上そうです、じゃなくて、スムーズに話していく上でaからanとなった、〈母音→母音〉と続かずに言いやすくなっていったの。

今のところまだ調べてないので〈きゆな仮説〉として頭に入れててね。今度調べて納得いくように説明できると思うからたのしみにしていてね」と伝えます。

 いずれにしても「腑に落ちる様に伝える」というのは、教育の根幹で、学んでいく人たちもたのしめることだと思います。

 今回紹介する、板倉先生の「0の概念・イメージの大切さ」を例にした〈本質や概念を学ぶ意義〉という話は数学にとどまらず、社会科学的なものにも広がる大切なものだと思います。

                             お読みください。

 何度か書いてきたのですけど、私は学校で英語が大嫌いになり、映画で英語の魅力を知りました。

 以前〈たの研〉で「たのしいイングリッシュコースを開催したことがありました。いつかまた開催したいものの一つです。

① 毎日1回の〈いいね〉クリックで「たの研」がもっと強くなる!⬅︎クリック

② たのしい教育を本格的に学ぶ〈たのしい教育メールマガジン-週刊有料を購読しませんか! たのしい教育の実践方法から発想法、映画の章ほか充実した内容です。講座・教材等の割引もあります(紹介サイトが開きます)

③ 応援として〈SNSや口コミ〉でこのサイトを広げていただければ幸いです!

たのしい科学史〈ラプラス〉ーニュートンの神秘性をなくし「神は必要ない」と言い切った知性①=科学者と原紙論者の話/楽しい学習・楽しい自由研究・楽しい学力・楽しい教材・楽しい学力向上

 アイザック・ニュートンは、リンゴから木から落ちるのを見て〈万有引力の法則〉を着想したといわれている現代物理学の基礎を作った巨人です。

 wikipediaに感謝して以下引用

アイザック・ニュートン

サー・アイザック・ニュートン: (Sir) Isaac Newtonユリウス暦1642年12月25日1727年3月20日グレゴリオ暦1643年1月4日1727年3月31日)は、イングランド自然哲学者数学者物理学者天文学者神学者

主な業績としてニュートン力学の確立や微積分法の発見がある。1717年に造幣局長としてニュートン比価および兌換率を定めた。ナポレオン戦争による兌換停止を経て、1821年5月イングランド銀行はニュートン兌換率により兌換を再開した。

国際単位系 (SI)における単位であるニュートン: newton、記号: N)は、アイザック・ニュートンに因む。

引用は以上

 ニュートンは現代の科学に偉大な功績を果たした人物でありながら、wikipediaに見る様に〈神学者〉、神様の存在を信じている人物でした。
 神を主体に考えたニュートンには科学的に否定される占星術や錬金術に関する研究を真剣にすすめオカルト的な側面があったことは有名で、ウィキペディアにも一つの項としてまとまっています。以下、引用します。

著名なイギリスの自然哲学者数学者ニュートンオカルトに関する研究について解説する。

科学者という用語や概念が登場してからは、「ニュートンは科学者」とも評されるようになり、自然科学者らによってニュートンの自然科学関連の業績ばかりが恣意的に抽出され、他の活動は無視・隠蔽する形でニュートン像が伝えられてきた(→ホイッグ史観)。

だが実際には、ニュートンは現在ではオカルト研究に分類される分野の著作も多く著しており、年代学・錬金術・聖書解釈(特に黙示録)についても熱心に研究していたのである。

ニュートン自身は、現代人が言うところの”科学的”研究の成果よりも、むしろ古代の神秘的な英知の再発見のほうが重要だと考えていた。これをふまえると、世界を機械論的に考察することを「ニュートン的世界観」と表現することには語弊がある、と指摘する人もいる。たとえば、1942年にニュートンの錬金術研究書を購入し、検討した経済学者のケインズは、「ニュートンは理性の時代 (age of reason) の最初の人ではなく、最後の魔術師だ」と発言した。

https://ja.wikipedia.org/wiki/

 

 私は学生の頃「どうして科学と神様を同時に信じることができるのか、本当に不思議なことだ」と感じていました。
 神様というのは科学法則を無視して奇跡を行なったり、突然、たくさんの種類の動物たちを登場させたり、絶滅させたりできる存在だというワケですから、科学的な法則と神様の両者が同時に成り立つというのは、それこそ〈矛盾〉だと思えたからです。

 あるとき板倉聖宣先生(元文科省科学研究所室長・元日本科学史学会会長・仮説実験授業研究会初代代表)との対話の本を書くためのインタビューで、その疑問が氷解しました。

わたし
 エピクロスなどの自由な発想を産むほどに民主的な社会になっていった古代ギリシャの社会にも〈奴隷〉が存在していたという事実に驚いてしまうのですけど、板倉先生はどう考えますか?」

 

板倉聖宣
 きゆなくん、今の時代の常識から前の時代を考えて良い悪いを判定するのはカンタンなんだよ。

 でもね、その時代に自分がいたらどういう思考になっていったのかという様に考えてみると、そんな簡単にはいかないよ。

 だって周り中みんながそう考えているわけだからね

 千数百年という長きにわたってキリスト教が支配したヨーロッパでは、生まれ落ちた時から神様の儀式が始まり、言葉を覚える頃には親や周りの人たちから神様の話を聞かされ、教会に行き、卒業、結婚、出産ほか折々の儀式で神様の存在を植え付けられ続けますから、言葉を身に着ける様に神様の存在をインプットされていくのです。そしてその呪縛から抜け出るのはとても難しいことなのです。

 それと比べても、前回触れた〈ラプラス〉はとても興味深い人物です。

 話を少しもどしましょう。
「科学者」という場合、ニュートンの様に神様を信じている人たちをも含むことがあるので、私は意識的に〈原子論者〉という言葉を使う様にしています。
〈原子論者〉というのは「これ以上分割できない原子の存在を元にして科学の研究をすすめていく人々」のことなのですけど、わたしの〈原子論者〉のイメージはこうです。

「原子論者とは、全ての物事・現象を、神その他を元にするのではなく〈原子の存在〉を元にして仮説実験的に研究をすすめていく人々」 いっきゅう

 神の存在を元にしませんから、ニュートンの様に神の存在を元にして科学的な現象を説明していく人たちとは異なるわけです。この〈原子論者〉のイメージはいっきゅうオリジナルですから、ぜひ広めていただけたらと思っています。

 さて、神の存在を信じていたニュートンは、著書『プリンキピア-自然哲学の数学的原理』で天体の動きを運動法則に基づいて説明したのですけど、そこにも神の意図が存在するとしました。

 ところがラプラスはプリンキピアで明らかにしたニュートンの運動法則は数学的な計算によって説明できることを示し「そこに〈神の存在〉は必要ない」と結論づけました。神秘的なニュートンの研究を、現代科学として完成させたと評される人物です。

 ニュートンが今も偉大な科学者としての立ち位置を維持しているのは、ラプラスの力によることも大きいでしょう。

 それにしても、ラプラスは一般的にいって知名度がそう高くありません。

 時間ができたら、さらに調べてみたい人物の一人です。

① 毎日1回の〈いいね〉クリックで「たの研」がもっと強くなる!⬅︎クリック

② たのしい教育を本格的に学ぶ〈たのしい教育メールマガジン-週刊有料を購読しませんか。たのしい教育の実践方法から発想法、映画の章ほか充実した内容です。講座・教材等の割引もあります(紹介サイトが開きます)

③ 〈SNSや口コミ〉でこのサイトを広げていただけませんか!